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N o t e  

Optimum Numerical Calculation of JWKB Phase Shifts 

I. INTRODUCTION 

In recent years, with the advent of fast computers, it has become practical, and 
in many cases, routine, to sum the Rayleigh-Faxen-Holtzmark series out to 
hundreds, and even thousands, of partial waves. Of course, in order to perform 
this summation, it is necessary to have sufficiently accurate phase shifts which 
may be exact phase shifts [1 ] or, where applicable, JWKB phase shifts. In evaluating 
the JWKB phase shifts, there are two possible methods, both of which are equiv- 
alent. First, if one has the classical deflection function, its integral with respect to 
angular momentum will give the JWKB phase shift [2]. Second, one can evaluate 
the integral of the inverse compton wavelength for the lth partial wave from the 
classical turning point, r0, to infinity, then the phase shift is given by 

n~ = ~ ( / -  1) _ kr0 - -  (k  - -  1 /~3  d r  (1) 

where k is the wavenumber [3]. 
Although there is, in general, no difficulty in evaluating Eq. (1) for a small 

number of phase shifts, if one is interested in evaluating several hundred phase 
shifts by the second method, extreme care must be used. To see this, consider the 
requirements for evaluating the phase shift to within an accuracy of a milliradian 
at 1 = 0 and at 1 = 1000. At 1 = 0, one only needs to evaluate the integral to three 
or four significant figures. But at 1 - 1000, it is necessary to evaluate the integral 
to at least three more significant figures, for a total of six or seven, since at least 
the three first figures will be canceled when the integral is substracted from the 
�89 + �89 - -  k r  o terms. Thus, unless the relative accuracy of  the integral is in- 
creased as 1 increases, one eventually reaches a point where the subtraction will 
give a result with no significant figures. But, if one does require an increase in the 
relative accuracy as l increases, one is then faced with the disadvantage of  
increased computational time as l increases. 

In order to overcome these difficulties, we have used another approach, which is 
to rewrite Eq. (1) so that the strong cancellation which occurs at large I values is 
done be fore  an integral is evaluated. In this manner, we need to evaluate an 
integral only to the desired number of significant figures. Furthermore, as l 
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increases past the point where the phase shift is monotonically decreasing in magni- 
tude, we need to evaluate an integral to less and less significant figures for a fixed 
absolute accuracy in the phase shift. Also, upon using this method, we were very 
pleasantly surprised to find that our computational time was dramatically 
decreased, whereas before we were averaging around six seconds per phase shift, 
now we were averaging around 250 msec per phase shift. 

II. OPTIMUM METHOD 

We start with a general form of the JWKB phase shift, by rewriting Eq. (1) as 

~ = [F(p/po) - -  l] dp - -  [G(p/j)  - -  1] dp + ( j  - -  po), (2) 
O0 

where 

p ~ kr ,  (3a) 

j -  l +  k (3b) 

k ~ ( 2 m E )  1/2, (3c) 

a(x )  =- (1 - llx~)l/~, (3d) 

F(p/po) -~ (1 _ j2/p2 _ U(p/po))i/z, (3e) 

V(x)  - V(poxlk)lE, ( 3 0  

and r o -~ Polk is the last classical turning point of the potential V(r), and thus 
p = P0 is the last zero of F(p/po). 

First, since for large p, ( F -  l) and (G -- 1) will be difficult to calculate in this 
manner without loss of significant figures, we will replace them by (F ~ -- 1)/(F + 1) 
and (G 2 -- 1)/(G q- 1), and use Eqs. (3d) and (3e) for reducing the numerator. 
Then changing the limits on both integrals to be from 1 to oo gives 

f~ V(x)dx f= dx[  i J/Po 1 
~7t = --Po 1 + F(x) q- ( j -  p~ q - j  ~ 1 + G(x) -- 1 +F(x)] '  (4) 

where x is a dummy variable, proportional to p. Now we use the identity 

1/(1 + F(x ) )  = 1/(1 + G(x))  + (G(x)  - -  r ( x ) ) / ( [1  + V(x)][1 + G(x)]), 

= x2[1 -- G(x)] (5) 

+ (U(x) + (j2/pg. _ 1)/x~)/([1 + F(x)][1 + G(x)][G(x)  + F(x)]), 
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which gives us 

~h = (Po--J)[(J/Po)(~r/2 -- 1 ) -  1] 

o~ dx [ .+_ U(x) + (j2/po~ -- 1)/x 2 ] 
Po fjl 1 + F(x) [U(x) x2tl + G(x)]~)~)iJ" l (6) 

To obtain the final form for calculational purposes, we define 

A p ~ Po --Y, (7) 

which may be calculated by iteration to the desired number of significant figures 
from 

Ap = (j + Ap)~V[(j + Ap)/k]/((2j-}- Ap)E). (8) 

Then letting x = 1/y in the integral gives 

1 dy t + yS W(y) -- Ap(j  + po)/Po 2 t (9) 
Po fJo 1 -}- F(y -1) t W(y)  [1 + G(y-1)][F(y -~) + G(y-X)]}" 

where W ( y ) -  UCv-X)/y ~. 
The advantage of Eq. (9) over Eq. (1) for numerical calculations is obvious. 

Every individual term in Eq. (9) vanishes as the potential vanishes. Such is not 
the case for Eq. (1). Rather, the first integral approachesj(~r/2 -- 1) which diverges 
as j becomes very large. This does not happen in Eq. (9). Instead, both dp and W 
approach zero. Consequently, one needs to evaluate this integral only to the 
number of significant figures desired in the JWKB phase shift. 
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